28.11 - C. Rolando, University of Basel

Condividi su
Data dell'evento: 28/11/2014
seminars_2014

Venerdì 28 novembre - ore 11:00
Aula seminari, NICO

Non canonical Drosha pathway regulates hippocampal neural stem cell differentiation
Chiara Rolando
Embryology and Stem Cell Biology, Department of Biomedicine - University of Basel

Self-renewing and multipotent neural stem cells (NSCs) reside in the dentate gyrus of the adult mammalian hippocampus. The Microprocessor, a multimeric complex of the ribonuclease Drosha and the RNA binding protein DGCR8, drives miRNA biogenesis.

The Microprocessor also has miRNA-independent functions, directly targeting and cleaving stem-loop hairpin structures of mRNAs and destabilizing the transcripts. We found that RNAse III Drosha regulates NSC maintenance and inhibits oligodendrocyte fate commitments in adult NSCs.

Drosha-CLIP (cross-linking and immunoprecipitation) experiment shows that Drosha binds the mRNAs of critical oligodendrocyte and gliogenic transcription factors. Taken together our findings reveal a new miRNA-independent action of the Microprocessor in the maintenance of adult NSCs and control of oligodendrocyte differentiation.

Ospite: Annalisa Buffo

download pdf

Agenda

06 novembre 2018

ZEISS Academy Workshop – Microscopia Correlativa 3D

Le ultime novità nella Microscopia Correlativa Multi-modale. Registrazione obbligatoria.

16 febbraio 2019

Torino - 10th International Meeting STEROIDS and NERVOUS SYSTEM

Since 2001, this meeting represented an important event for basic and clinical researchers working on this emerging scientific topic. We will address state-of-the-art approaches in the field of steroids and nervous system, including behavior, epigenetics, genomic and non-genomic actions, the vitamin D, neurodegenerative and psychiatric disorders, and the interference among endocrine disruptors and steroid signaling.

Ricerca

Identificato un nuovo bersaglio per contrastare la SMA

L’inibizione della proteina JNK rallenta la progressione della malattia che colpisce i motoneuroni ed è la prima causa genetica di morte nell’infanzia. Lo dimostra uno studio pubblicato su Frontiers in Molecular Neuroscience dal nostro gruppo di ricerca guidato da Alessandro Vercelli, in collaborazione con l’Istituto Mario Negri di Milano. Chiarire i meccanismi molecolari alla base della SMA può aprire la strada allo sviluppo di nuove terapie.

24 ottobre 2018