Plos One

Condividi su
07/05/2013
Plos One

Plos One, May 2013

Cellular and Molecular Characterization of Multipolar Map5-Expressing Cells: A Subset of Newly Generated, Stage-Specific Parenchymal Cells in the Mammalian Central Nervous System

Paola Crociara, Roberta Parolisi, Daniele Conte, Marta Fumagalli, Luca Bonfanti

Although extremely interesting in adult neuro-glio-genesis and promising as an endogenous source for repair, parenchymal progenitors remain largely obscure in their identity and physiology, due to a scarce availability of stage-specific markers.
What appears difficult is the distinction between real cell populations and various differentiation stages of the same population. Here we focused on a subset of multipolar, polydendrocyte-like cells (mMap5 cells) expressing the microtubule associated protein 5 (Map5), which is known to be present in most neurons.

Plos-INTERNO

We characterized the morphology, phenotype, regional distribution, proliferative dynamics, and stage-specific marker expression of these cells in the rabbit and mouse CNS, also assessing their existence in other mammalian species. mMap5 cells were never found to co-express the Ng2 antigen. They appear to be a population of glial cells sharing features but also differences with Ng2+progenitor cells.
We show that mMap5 cells are newly generated, postmitotic parenchymal elements of the oligodendroglial lineage, thus being a stage-specific population of polydendrocytes. Finally, we report that the number of mMap5 cells, although reduced within the brain of adult/old animals, can increase in neurodegenerative and traumatic conditions.

Read more: www.plosone.org

Agenda

16 febbraio 2019

Torino - 10th International Meeting STEROIDS and NERVOUS SYSTEM

Since 2001, this meeting represented an important event for basic and clinical researchers working on this emerging scientific topic. We will address state-of-the-art approaches in the field of steroids and nervous system, including behavior, epigenetics, genomic and non-genomic actions, the vitamin D, neurodegenerative and psychiatric disorders, and the interference among endocrine disruptors and steroid signaling.

Ricerca

Identificato un nuovo bersaglio per contrastare la SMA

L’inibizione della proteina JNK rallenta la progressione della malattia che colpisce i motoneuroni ed è la prima causa genetica di morte nell’infanzia. Lo dimostra uno studio pubblicato su Frontiers in Molecular Neuroscience dal nostro gruppo di ricerca guidato da Alessandro Vercelli, in collaborazione con l’Istituto Mario Negri di Milano. Chiarire i meccanismi molecolari alla base della SMA può aprire la strada allo sviluppo di nuove terapie.

24 ottobre 2018